Question A - Recursion and Induction - 20 Marks

Given the sequence a_{n} defined with the recurrence relation:

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=n\left(a_{n-1}\right)^{2} \text { for } n \geq 1
\end{aligned}
$$

Terms of a Sequence (5 marks)

```
\(a_{1}=1.1^{2}=1\)
\(a_{2}=2.1^{2}=2\)
\(a_{3}=3 \cdot\left(2 \cdot 1^{2}\right)^{2}=3 \cdot 2^{2} \cdot 1^{4}=12\)
\(a_{4}=4 \cdot\left(3 \cdot 2^{2} \cdot 1^{4}\right)^{2}=4 \cdot 3^{2} \cdot 2^{4} \cdot 1^{8}=576\)
\(a_{5}=5 \cdot\left(4 \cdot 3^{2} \cdot 2^{4} \cdot 1^{8}\right)^{2}=5 \cdot 4^{2} \cdot 3^{4} \cdot 2^{8} \cdot 1^{16}=1,658,880\)
```

Iteration (3 marks)

$$
\mathrm{a}_{\mathrm{n}}=\prod_{i=1}^{n} i^{2^{n-i}}=\prod_{i=0}^{n-1}(n-i)^{2^{i}}
$$

Proof by induction (12 marks)
Show that $2 \mid n^{2}-n$ for all positive integers n by weak induction. No other method is acceptable.
Define the predicate $\mathrm{P}(\mathrm{n})$ to be $2 \mid \mathrm{n}^{2}-\mathrm{n}$.
We are going to show that $\forall \mathrm{n} \in \mathbb{N}^{+} \mathrm{P}$ (n)
Proof:
Base case:
When $\mathrm{n}=1, \mathrm{n}^{2}-\mathrm{n}=1-1=0=2.0$, so $2 \mid n^{2}-\mathrm{n}$
i.e. $P(1)$ is true.

Inductive Step:
Assume that $\mathrm{P}(\mathrm{n})$ is true for some n in \mathbb{N}^{+}
This means that $\exists \mathrm{k} \in \mathbb{Z}, \mathrm{n}^{2}-\mathrm{n}=2 \mathrm{k}$
Show that $\mathrm{P}(\mathrm{n}+1)$ is true.
$(\mathrm{n}+1)^{2}-(\mathrm{n}+1)=\mathrm{n}^{2}+2 \mathrm{n}+1-\mathrm{n}-1=\mathrm{n}^{2}-\mathrm{n}+2 \mathrm{n}$ by algebra
$=2 \mathrm{k}+2 \mathrm{n}$ by inductive hypothesis
$=2(k+n)$ by algebra
Since k, n are integers and \mathbb{Z} is closed under +, then $k+n \in \mathbb{Z}$
Therefore $2 \mid(n+1)^{2}-(n+1)$
QED by induction

Question B - Number Theory - 20 marks

Euclidian Algorithm (5 marks)

```
gcd (598, 1287) = gcd(1287,598)
    = gcd(598,1287 mod 598) = gcd(598,91)
    = gcd(91,598 mod 91) = gcd(91,52)
    = gcd(52,91 mod 52) = gcd(52,39)
    = gcd(39,52 mod 39) = gcd(39,13)
    = gcd(13,39 mod 13) = gcd}(13,0)=1
```


Mod Proof (15 marks)

Prove that for any integers A, B, a, d such that $\mathrm{d} \neq 0$,
if $A \bmod d=a$ and $B \bmod d=1$ then $A B \bmod d=a$
Proof:
Let A, B, a, d be integers such that $d \neq 0$ and $A \bmod d=a$ and $B \bmod d=1$
We'll show that $A B \bmod d=a$
Since $A \bmod d=a$ then by the QRT: A = (A div d) $. d+a$ (1) and $0 \leq a<d$ (2)
Since $B \bmod d=1$ then by the QRT: $\mathrm{B}=(\mathrm{B}$ div d) $. \mathrm{d}+1$ (3)
So $A B=((A \operatorname{div} d) \cdot d+a) \cdot((B \operatorname{div} d) \cdot d+1)$ by substituting with (1) and (3)
$=[(\mathrm{A} \operatorname{div} \mathrm{d})(\mathrm{B} \operatorname{div} \mathrm{d}) \cdot \mathrm{d}+(\mathrm{B} \operatorname{div} \mathrm{d}) \cdot \mathrm{a}+(\mathrm{A} \operatorname{div} \mathrm{d})] \cdot \mathrm{d}+\mathrm{a}$
Let $p=[(A \operatorname{div} d)(B \operatorname{div} d) \cdot d+(B \operatorname{div} d) \cdot a+(A \operatorname{div} d)]$
Then AB = p.d + a (4)
Since all the terms in p are integers and \mathbb{Z} is closed under div, + and ., then $p \in \mathbb{Z}$. (5)
By the QRT: \exists ! $\mathrm{q}, \mathrm{r} \in \mathbb{Z} \mathrm{AB}=\mathrm{q} \cdot \mathrm{d}+\mathrm{r}$ and $0 \leq \mathrm{r}=\mathrm{AB} \bmod \mathrm{d}<\mathrm{d}$
Therefore, since by (4): $A B=p . d+a \quad$ and by (2): $0 \leq a<d$, where $p, a \in \mathbb{Z}$ by (5)
then a must be AB mod d (because of the uniqueness part of the QRT)
QED
Question C - Graph Theory - 20 marks

Graph Degrees (12 marks)

For each of the following questions, either draw a graph with the requested properties, or explain convincingly (possibly by quoting a theorem) why such a graph cannot be drawn.
a) A graph with 5 vertices of degrees 5, 5, 4, 4, 3

This graph cannot be drawn because the degree of a graph (sum of degree of vertices) must be even, and in this case the sum of the degree of these 5 vertices is 21 which is odd.
b) A graph with 5 vertices of degrees 5, 5, 4, 4, 4

There are many possible answers. Here are 3:

d) A simple graph with at least 5 vertices which have degrees 5, 5, 4, 4, 4. The other vertices have whichever degree seems appropriate.

Again there are many possible answers. One simple answer is built by adding one vertex to K_{5} and connecting it to 2 of K_{5}^{\prime} 's vertices, thus bringing their degrees up from 4 to 5:

Circuits (8 marks)

a) Find an Euler circuit in G that starts at v_{1}.

A graph contains an Euler circuit iff it is connected and every vertex has an even degree. G, however, has some vertices with odd degree ($\mathrm{v}_{2}, \mathrm{~V}_{3}, \mathrm{v}_{5}, \mathrm{v}_{6}$). Therefore it cannot contain an Euler circuit.
b) Find a Hamiltonian circuit in G that starts at v_{1}

There are 2 Hamiltonian circuits:
$\begin{array}{ll}- & \mathrm{v}_{1} \mathrm{e}_{1} \mathrm{v}_{2} \mathrm{e}_{3} \mathrm{v}_{3} \mathrm{e}_{5} \mathrm{v}_{5} \mathrm{e}_{10} \mathrm{v}_{8} \mathrm{e}_{8} \mathrm{v}_{6} \mathrm{e}_{9} \mathrm{v}_{7} \mathrm{e}_{7} \mathrm{v}_{4} \mathrm{e}_{2} \mathrm{v}_{1} \\ - & \mathrm{v}_{1} \mathrm{e}_{2} \mathrm{v}_{4} \mathrm{e}_{7} \mathrm{v}_{7} \mathrm{e}_{9} \mathrm{v}_{6} \mathrm{e}_{8} \mathrm{v}_{8} \mathrm{e}_{10} \mathrm{v}_{5} \mathrm{e}_{5} \mathrm{v}_{3} \mathrm{e}_{3} \mathrm{v}_{2} \mathrm{e}_{1} \mathrm{v}_{1}\end{array}$

c) Find an Euler circuit in H that starts at V_{1}

There are 4 Euler circuits:

- $V_{1} e_{2} V_{4} e_{5} V_{7} e_{7} V_{6} e_{6} V_{5} e_{8} V_{8} e_{9} V_{6} e_{4} V_{3} e_{3} V_{2} e_{1} V_{1}$
- $\quad V_{1} e_{2} v_{4} e_{5} v_{7} e_{7} v_{6} e_{9} V_{8} e_{8} v_{5} e_{6} V_{6} e_{4} V_{3} e_{3} V_{2} e_{1} V_{1}$ $v_{1} e_{1} V_{2} e_{3} V_{3} e_{4} v_{6} e_{6} V_{5} e_{8} V_{8} e_{9} v_{6} e_{7} V_{7} e_{5} V_{4} e_{2} V_{1}$ $\mathrm{V}_{1} \mathrm{e}_{1} \mathrm{~V}_{2} \mathrm{e}_{3} \mathrm{~V}_{3} \mathrm{e}_{4} \mathrm{~V}_{6} \mathrm{e}_{9} \mathrm{~V}_{8} \mathrm{e}_{8} \mathrm{~V}_{5} \mathrm{e}_{6} \mathrm{~V}_{6} \mathrm{e}_{7} \mathrm{~V}_{7} \mathrm{e}_{5} \mathrm{~V}_{4} \mathrm{e}_{2} \mathrm{~V}_{1}$
d) Find a Hamileqnín circuit in H that
starts at V_{1} starts at V_{1}

Theorem: If H contained a Hamiltonian circuit, then it would have a connected subgraph which contained all its vertices, all of which would be of degree 2 .
2o get such a subgrafi, 31 the edges incidents on vertices in $\mathrm{V}(\mathrm{H})$ - $\left\{\mathrm{V}_{6}\right\}$ would have to be preserved because all the vertices in that set have degree 2 . So the subgraph would have to include edges $\mathrm{e}_{4}, \mathrm{e}_{6}, \mathrm{e}_{7}, \mathrm{e}_{9}$ and as a result vertex v_{6} would have to be of degree 4 which contradicts the theorem.

