MTH 210

Question A – Recursion and Induction – 20 Marks

Given the sequence a_n defined with the recurrence relation:

 $a_0 = 1$ $a_n = n (a_{n-1})^2$ for $n \ge 1$

Terms of a Sequence (5 marks)

 $\begin{array}{l} a_1 = 1 \, . \, 1^2 = 1 \\ a_2 = 2 \, . \, 1^2 = 2 \\ a_3 = 3 \, . \, (2 \, . \, 1^2)^2 = 3 \, . \, 2^2 \, . \, 1^4 = 12 \\ a_4 = 4 \, . \, (3 \, . \, 2^2 \, . \, 1^4)^2 = 4 \, . \, 3^2 \, . \, 2^4 \, . \, 1^8 = 576 \\ a_5 = 5 \, . \, (4 \, . \, 3^2 \, . \, 2^4 \, . \, 1^8)^2 = 5 \, . \, 4^2 \, . \, 3^4 \, . \, 2^8 \, . \, 1^{16} = 1,658,880 \end{array}$

Iteration (3 marks)

$$a_n = \prod_{i=1}^n i^{2^{n-i}} = \prod_{i=0}^{n-1} (n-i)^{2^i}$$

Proof by induction (12 marks)

Show that $2 | n^2 - n$ for all positive integers n by weak induction. No other method is acceptable.

Define the predicate P(n) to be $2 | n^2 - n$. We are going to show that $\forall n \in \mathbb{N}^+ P(n)$ Proof: Base case: When n=1, $n^2 - n = 1 - 1 = 0 = 2 \cdot 0$, so $2 \mid n^2 - n$ i.e. P(1) is true. Inductive Step: Assume that P(n) is true for some n in \mathbb{N}^+ This means that $\exists k \in \mathbb{Z}$, $n^2 - n = 2k$ Show that P(n+1) is true. $(n+1)^2 - (n+1) = n^2 + 2n + 1 - n - 1 = n^2 - n + 2n$ by algebra = 2k+2n by inductive hypothesis = 2(k+n) by algebra Since k,n are integers and \mathbb{Z} is closed under +, then k+n $\in \mathbb{Z}$ Therefore $2 | (n+1)^2 - (n+1)$ QED by induction

Question B – Number Theory – 20 marks

Euclidian Algorithm (5 marks)

gcd (598, 1287) = gcd(1287,598)= gcd(598,1287 mod 598) = gcd(598,91)= gcd(91,598 mod 91) = gcd(91,52)= gcd(52,91 mod 52) = gcd(52,39)= gcd(39,52 mod 39) = gcd(39,13)= gcd(13,39 mod 13) = gcd(13,0) = 13

MTH 210

W2005 MIDTERM SOLUTIONS

Mod Proof (15 marks)

Prove that for any integers A, B, a, d such that $d\neq 0$, if A mod d = a and B mod d = 1 then AB mod d = aProof: Let A, B, a, d be integers such that $d \neq 0$ and A mod d = a and B mod d = 1 We'll show that AB mod d = aSince A mod d = a then by the QRT: A = (A div d) . d + a (1) and $0 \le a \le d$ (2) Since B mod d = 1 then by the QRT: $B = (B \text{ div } d) \cdot d + 1$ (3) So $AB = ((A \text{ div } d) \cdot d + a) \cdot ((B \text{ div } d) \cdot d + 1)$ by substituting with (1) and (3) $= [(A \operatorname{div} d)(B \operatorname{div} d).d + (B \operatorname{div} d).a + (A \operatorname{div} d)] . d + a$ Let $p = [(A \operatorname{div} d)(B \operatorname{div} d).d + (B \operatorname{div} d).a + (A \operatorname{div} d)]$ Then AB = p.d + a(4)Since all the terms in p are integers and \mathbb{Z} is closed under div, + and . , then $p \in \mathbb{Z}$. (5) By the QRT: $\exists !q,r \in \mathbb{Z} AB = q.d + r \text{ and } 0 \leq r = AB \mod d < d$ Therefore, since by (4): AB = p.d + aand by (2): $0 \le a < d$, where $p, a \in \mathbb{Z}$ by (5)

then a must be AB mod d (because of the uniqueness part of the QRT) QED

Question C – Graph Theory – 20 marks

Graph Degrees (12 marks)

For each of the following questions, either draw a graph with the requested properties, or explain convincingly (possibly by quoting a theorem) why such a graph cannot be drawn.

a) A graph with 5 vertices of degrees 5, 5, 4, 4, 3 This graph cannot be drawn because the degree of a graph (sum of degree of vertices) must be even, and in this case the sum of the degree of these 5 vertices is 21 which is odd.	b) A graph with 5 vertices of degrees 5, 5, 4, 4, 4 There are many possible answers. Here are 3:
 c) A simple graph with 5 vertices of degrees 5, 5, 4, 4, 4 Simple graphs do not contain parallel edges or loops, so the maximum degree of any edge in a simple graph with n vertices is n-1 as each vertex has at most n-1 incident edges, one for each of the other vertices. Therefore it is not possible to draw a simple graph with n vertices, at least one of which has degree n, 	 d) A simple graph with at least 5 vertices which have degrees 5, 5, 4, 4, 4. The other vertices have whichever degree seems appropriate. Again there are many possible answers. One simple answer is built by adding one vertex to K₅ and connecting it to 2 of K₅'s vertices, thus bringing their degrees up from 4 to 5:

MTH 210

3 of 3

Circuits (8 marks)

v8